Blog

  • Fish Farming or Pisciculture 

    Fish farming or pisciculture involves commercial breeding of fish, most often for food, in fish tanks or artificial enclosures such as fish ponds. It is a particular type of aquaculture, which is the controlled cultivation and harvesting of aquatic animals such as fish, crustaceansmolluscs and so on, in natural or pseudo-natural environments. A facility that releases juvenile fish into the wild for recreational fishing or to supplement a species’ natural numbers is generally referred to as a fish hatchery. Worldwide, the most important fish species produced in fish farming are carpcatfishsalmon and tilapia.[1]

    Global demand is increasing for dietary fish protein, which has resulted in widespread overfishing in wild fisheries, resulting in significant decrease in fish stocks and even complete depletion in some regions. Fish farming allows establishment of artificial fish colonies that are provided with sufficient feeding, protection from natural predators and competitive threats, access to veterinarian service, and easier harvesting when needed, while being separate from and thus do not usually impact the sustainable yields of wild fish populations. While fish farming is practised worldwide, China alone provides 62% of the world’s farmed fish production.[2] As of 2016, more than 50% of seafood was produced by aquaculture.[3] In the last three decades, aquaculture has been the main driver of the increase in fisheries and aquaculture production, with an average growth of 5.3 percent per year in the period 2000–2018, reaching a record 82.1 million tonnes in 2018.[4]

    World capture fisheries and aquaculture production by production mode, from FAO‘s Statistical Yearbook 2021[5]

    Farming carnivorous fish such as salmon, however, does not always reduce pressure on wild fisheries, such farmed fish are usually fed fishmeal and fish oil extracted from wild forage fish. The 2008 global returns for fish farming recorded by the FAO totaled 33.8 million tonnes worth about US$60 billion.[6]

    Although fish farming for food is the most widespread, another major fish farming industry provides living fish for the aquarium trade. The vast majority of freshwater fish in the aquarium trade originate from farms in Eastern and Southern Asia, eastern Europe, Florida and South America that use either indoor tank systems or outdoor pond systems, while farming of fish for the marine aquarium trade happens at a much smaller scale.[7] In 2022 24% of fishers and fish farmers and 62% of workers in post-harvest sector were women.[8][9]

    Major species

    [edit]

    See also: List of commercially important fish species

    SpeciesEnvironmentTonnage
    (millions)
    Value
    (US$ billions)
    Grass carpFreshwater5.236.69
    Silver carpFreshwater4.596.13
    Common carpFreshwater3.765.19
    Nile tilapiaFreshwater3.265.39
    Bighead carpFreshwater2.903.72
    Catla (Indian carp)Freshwater2.765.49
    Crucian carpFreshwater2.452.67
    Atlantic salmonMarine2.0710.10
    Roho labeoFreshwater1.572.54
    MilkfishMarine0.941.71
    Rainbow troutFreshwaterBrackishMarine0.883.80
    Wuchang breamFreshwater0.711.16
    Black carpFreshwater0.501.15
    Northern snakeheadFreshwater0.480.59
    Amur catfishFreshwater0.410.55

    Categories

    [edit]

    Aquaculture makes use of local photosynthetic production (extensive) or fish that are fed with external food supply (intensive).

    Extensive aquaculture

    [edit]

    Salmon farming in the sea (mariculture) at Loch Ainort, Isle of SkyeScotland

    Extensive aquaculture is the other form of fish farming. Extensive aquaculture is more basic than intensive aquaculture in that less effort is put into the husbandry of the fish. Extensive aquaculture is done in the ocean, natural and man-made lakes, bays, rivers, and Fiords. Fish are contained within these habitats by multiple mesh enclosures which also function as trapping nets during harvest (Figure 3) (4). Since fish are susceptible to the elements, site placement is essential to ensure the rapid growth of the targeted species. The drawback of these facilities is that they depend on the surrounding area for good water quality in order to reduce mortality and increase the survivorship and growth rate of the fish (19). Fish chosen for extensive aquaculture are very hardy and often do well in high densities. Seaweed, prawns, mussels, carp, tilapia, tuna and salmon are the most prominent forms of extensive aqua cultured seafood. Extensive aquaculture facilities have negative impacts on the environment as well. Natural habitats are destroyed in the development of man made ponds used for extensive aquaculture. In the Philippines, shrimp aquaculture is responsible for the destruction of thousands of acres of mangrove fields which serve as nurseries and living habitats for many marine organisms. Benthic habitats are being depleted due to the high amount of organic waste produced by the fish which settles below their pens(4). Phytoplankton and algae break down fecal matter and residual fish meal reducing the amount of available oxygen in the water column, which chokes and kills the Benthic organisms. Another serious problem acquainted with extensive aquaculture is the introduction of invasive species into ecosystems (10). Escaped fish increase the competition between organisms for limited resources. Also, when foreign fish interbreed with wild species, they upset the genetic variability of the species, making them more prone to disease and infection. The high density of fish in these mesh tanks is very tempting for predators of the sea and air (19). To protect the harvest from predators protective netting is set up at a high cost. Often times predatorial fish and mammals like seals, sharks, and tuna get caught in these barrier nets and die. Some farmers protect their stocks from predatorial birds such as pelicans and albatross by shooting these sometimes endangered creatures.

    Intensive aquaculture

    [edit]

    This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (February 2021) (Learn how and when to remove this message)
    ParameterOptimal value
    AciditypH 6–9
    Arsenic< 440 μg/L
    Alkalinity> 20 mg/L (as CaCO3)
    Aluminium< 0.075 mg/L
    Ammonia (non-ionized)< 0.02 mg/L
    Cadmium< 0.0005 mg/L in soft water< 0.005 mg/L in hard water
    Calcium> 5 mg/L
    Carbon dioxide< 5–10 mg/L
    Chloride> 4.0 mg/L
    Chlorine< 0.003 mg/L
    Copper< 0.0006 mg/L in soft water< 0.03 mg/L in hard water
    Gas supersaturation< 100% total gas pressure< 103% for salmonid eggs/fry< 102% for lake trout
    Hydrogen sulfide< 0.003 mg/L
    Iron< 0.1 mg/L
    Lead< 0.02 mg/L
    Mercury< 0.0002 mg/L
    Nitrate< 1.0 mg/L
    Nitrite< 0.1 mg/L
    Oxygen6 mg/L for coldwater fish4 mg/L for warmwater fish
    Selenium< 0.01 mg/L
    Total dissolved solids< 200 mg/L
    Total suspended solids< 80 NTU over ambient levels
    Zinc< 0.005 mg/L

    In these kinds of systems fish production per unit of surface can be increased at will, as long as sufficient oxygen, fresh water and food are provided. Because of the requirement of sufficient fresh water, a massive water purification system must be integrated in the fish farm. One way to achieve this is to combine hydroponic horticulture and water treatment, see below. The exception to this rule are cages which are placed in a river or sea, which supplements the fish crop with sufficient oxygenated water. Some environmentalists object to this practice.

    Expressing eggs from a female rainbow trout

    The cost of inputs per unit of fish weight is higher than in extensive farming, especially because of the high cost of fish feed. It must contain a much higher level of protein (up to 60%) than cattle feed and a balanced amino acid composition, as well. These higher protein-level requirements are a consequence of the higher feed efficiency of aquatic animals (higher feed conversion ratio [FCR], that is, kg of feed per kg of animal produced). Fish such as salmon have an FCR around 1.1 kg of feed per kg of salmon[11] whereas chickens are in the 2.5 kg of feed per kg of chicken range. Fish do not use energy to keep warm, eliminating some carbohydrates and fats in the diet, required to provide this energy. This may be offset, though, by the lower land costs and the higher production which can be obtained due to the high level of input control.

    Aeration of the water is essential, as fish need a sufficient oxygen level for growth. This is achieved by bubbling, cascade flow, or aqueous oxygen. Catfish in genus Clarias can breathe atmospheric air and can tolerate much higher levels of pollutants than trout or salmon, which makes aeration and water purification less necessary and makes Clarias species especially suited for intensive fish production. In some Clarias farms, about 10% of the water volume can consist of fish biomass.

    The risk of infections by parasites such as fish lice, fungi (Saprolegnia spp.), intestinal worms (such as nematodes or trematodes), bacteria (e.g., Yersinia spp., Pseudomonas spp.), and protozoa (such as dinoflagellates) is similar to that in animal husbandry, especially at high population densities. However, animal husbandry is a larger and more technologically mature area of human agriculture and has developed better solutions to pathogen problems. Intensive aquaculture has to provide adequate water quality (oxygen, ammonia, nitrite, etc.) levels to minimize stress on the fish. This requirement makes control of the pathogen problem more difficult. Intensive aquaculture requires tight monitoring and a high level of expertise of the fish farmer.

    Controlling roes manually

    Very-high-intensity recycle aquaculture systems (RAS, also Recirculating Aquaculture Systems), where all the production parameters are controlled, are being used for high-value species. By recycling water, little is used per unit of production. However, the process has high capital and operating costs. The higher cost structures mean that RAS is economical only for high-value products, such as broodstock for egg production, fingerlings for net pen aquaculture operations, sturgeon production, research animals, and some special niche markets such as live fish.[12][13]

    Raising ornamental coldwater fish (goldfish or koi), although theoretically much more profitable due to the higher income per weight of fish produced, has been successfully carried out only in the 21st century. The increased incidences of dangerous viral diseases of koi carp, together with the high value of the fish, has led to initiatives in closed-system koi breeding and growing in a number of countries. Today, a few commercially successful intensive koi-growing facilities are operating in the UK, Germany, and Israel.

    Some producers have adapted their intensive systems in an effort to provide consumers with fish that do not carry dormant forms of viruses and diseases.

    In 2016, juvenile Nile tilapia were given a food containing dried Schizochytrium in place of fish oil. When compared to a control group raised on regular food, they exhibited higher weight gain and better food-to-growth conversion, plus their flesh was higher in healthy omega-3 fatty acids.[14][15]

    Fish farms

    [edit]

    Within intensive and extensive aquaculture methods, numerous specific types of fish farms are used; each has benefits and applications unique to its design.

    Cage system

    [edit]

    Giant gourami is often raised in cages in central Thailand.

    Fish cages are placed in lakes, bayous, ponds, rivers, or oceans to contain and protect fish until they can be harvested.[16] The method is also called “off-shore cultivation”[17] when the cages are placed in the sea. They can be constructed of a wide variety of components. Fish are stocked in cages, artificially fed, and harvested when they reach market size. A few advantages of fish farming with cages are that many types of waters can be used (rivers, lakes, filled quarries, etc.), many types of fish can be raised, and fish farming can co-exist with sport fishing and other water uses.[16]

    Cage farming of fishes in open seas is also gaining in popularity. Given concerns of disease, poaching, poor water quality, etc., generally pond systems are considered simpler to start and easier to manage. Also, the past occurrences of cage-failures leading to escapes, have raised concern regarding the culture of non-native fish species in dam or open-water cages. On August 22, 2017, there was a massive failure of such cages at a commercial fishery in Washington state in Puget Sound, leading to release of nearly 300,000 Atlantic salmon in non-native waters. This is believed to risk endangering the native Pacific salmon species.[18]

    Marine Scotland has kept records of caged fish escapes since 1999. They have recorded 357 fish escape incidents with 3,795,206 fish escaping into fresh and salt water. One company, Dawnfresh Farming Limited has been responsible for 40 incident and 152,790 Rainbow Trout escaping into freshwater lochs.[19]

    Though the cage-industry has made numerous technological advances in cage construction in recent years, the risk of damage and escape due to storms is always a concern.[16]

    Semi-submersible marine technology is beginning to impact fish farming. In 2018, 1.5 million salmon are in the middle of a year-long trial at Ocean Farm 1 off the coast of Norway. The semi-submersible US$300 million project is the world’s first deep-sea aquaculture project, and includes 61-meter (200 ft)-high by 91-meter (300 ft)-diameter pen made from a series of mesh-wire frames and nets. It is designed to disperse wastes better than more conventional farms in sheltered coastal waters, therefore supporting higher fish packing density.[20]

    Copper-alloy nets

    [edit]

    Main article: Copper alloys in aquaculture

    Recently, copper alloys have become important netting materials in aquaculture. Copper alloys are antimicrobial, that is, they destroy bacteriavirusesfungialgae, and other microbes. In the marine environment, the antimicrobial/algaecidal properties of copper alloys prevent biofouling, which can briefly be described as the undesirable accumulation, adhesion, and growth of microorganisms, plants, algaetube wormsbarnaclesmollusks, and other organisms.[21]

    The resistance of organism growth on copper alloy nets also provides a cleaner and healthier environment for farmed fish to grow and thrive. Traditional netting involves regular and labor-intensive cleaning. In addition to its antifouling benefits, copper netting has strong structural and corrosion-resistant properties in marine environments.[22]

    Copper-zinc brass alloys are deployed in commercial-scale aquaculture operations in Asia, South America, and USA (Hawaii). Extensive research, including demonstrations and trials, are being implemented on two other copper alloys: copper-nickel and copper-silicon. Each of these alloy types has an inherent ability to reduce biofouling, cage waste, disease, and the need for antibiotics, while simultaneously maintaining water circulation and oxygen requirements. Other types of copper alloys are also being considered for research and development in aquaculture operations.[23]

    In Southeast Asia, the traditional cage farming platform is called kelong.[24]

    Open net pen system

    [edit]

    The open net pens system is a method that takes place in natural waters, such as rivers, lakes, near the coast or offshore. The breeders rear the fish in large cages floating in the water.[25] The fish are living in natural water but are isolated with a net. Because the only barrier separating the fish from the surrounding environment is a net, this allows the water to flow from the ‘natural’ surrounding through the fish farms.

    The site of the fish farm is crucial for the farm to be a success or not. Before any fish farm is settled, it is highly recommended to be selective with the site location of the farm. The site must be examined on some essential elements. Important conditions on the location are:[26]

    1. A good interchange of water and also a high replacement of bottom water.
    2. At all depths should be a good current condition. This is necessary because the organic particles should be able to be carried away using the current.
    3. A gravel and sand bottom are qualified for fish farming, although bottoms with silt and mud are not qualified. These should be avoided.
    4. A net should be at least 10 metres (33 ft) or more above the bottom, so depth is important.

    Despite these important site conditions, the open net pen method was very popular in Norway and China. This is because of the cost friendliness and efficiency of this method.[27]

    Negative external effects

    [edit]

    Because of the ocean’s water flow and other reasons, open net pen culture is seen as a high-risk method for the environment.[28] The flow allows chemicals, parasites, waste and diseases to spread in the enclosed environment, and this is not beneficial for the natural environment. Another negative consequence is the high escape rate of the cultured fish from these open net pens. These escaped fish also pose a high risk to the surrounding ecosystems.

    The amount of organic waste produced by fish farms is also alarming. A salmon farm in Scotland, for instance, is estimated to produce as much organic waste as equivalent to a town of people between 10,000 and 20,000 people each year.[29]

    Today 50% of the world’s seafood is farm-raised.[30]

    Irrigation ditch or pond systems

    [edit]

    A row of square artificial ponds, with trees on either side
    These fish-farming ponds were created as a cooperative project in a rural village in the Congo.

    These use irrigation ditches or farm ponds to raise fish. The basic requirement is to have a ditch or pond that retains water, possibly with an above-ground irrigation system (many irrigation systems use buried pipes with headers).[31]

    Using this method, water allotments can be stored in ponds or ditches, usually lined with bentonite clay. In small systems, the fish are often fed commercial fish food, and their waste products can help fertilize the fields. In larger ponds, the pond grows water plants and algae as fish food. Some of the most successful ponds grow introduced strains of plants, as well as introduced strains of fish.[32]

    Control of water quality is crucial. Fertilizing, clarifying, and pH control of the water can increase yields substantially, as long as eutrophication is prevented and oxygen levels stay high. Yields can be low if the fish grow ill from electrolyte stress.[33]

    Composite fish culture

    [edit]

    The composite fish culture system is a technology developed in India by the Indian Council of Agricultural Research in the 1970s. In this system, of both local and imported fish, a combination of five or six fish species is used in a single fish pond. These species are selected so that they do not compete for food among them by having different types of food habitats.[34][35] As a result, the food available in all the parts of the pond is used. Fish used in this system include catla and silver carp (surface feeders), rohu (a column feeder), and mrigal and common carp (bottom feeders). Other fish also feed on the excreta of the common carp, and this helps contribute to the efficiency of the system which in optimal conditions produces 3000–6000 kg of fish per hectare per year.[36]

    One problem with such composite fish culture is that many of these fish breed only during monsoon. Even if fish are collected from the wild, they can be mixed with other species, as well. Thus, a major problem in fish farming is the lack of availability of good-quality stock. To overcome this problem, ways have now been worked out to breed these fish in ponds using hormonal stimulation. This has ensured the supply of pure fish stock in desired quantities.[37]

    Integrated recycling systems

    [edit]

    Main article: Aquaponics

    Aerators in a fish farm (Ararat plainArmenia)

    One of the largest problems with freshwater pisciculture is that it can use a million gallons of water per acre (about 1 m3 of water per m2) each year. Extended water purification systems allow for the reuse (recycling) of local water.

    The largest-scale pure fish farms use a system derived (admittedly much refined) from the New Alchemy Institute in the 1970s. Basically, large plastic fish tanks are placed in a greenhouse. A hydroponic bed is placed near, above or between them. When tilapia are raised in the tanks, they are able to eat algae, which naturally grow in the tanks when the tanks are properly fertilized.[38]

    The tank water is slowly circulated to the hydroponic beds, where the tilapia waste feeds commercial plant crops. Carefully cultured microorganisms in the hydroponic bed convert ammonia to nitrates, and the plants are fertilized by the nitrates and phosphates.Other wastes are strained out by the hydroponic media, which double as an aerated pebble-bed filter.[39]

    This system, properly tuned, produces more edible protein per unit area than any other. A wide variety of plants can grow well in the hydroponic beds. Most growers concentrate on herbs (e.g. parsley and basil), which command premium prices in small quantities all year long. The most common customers are restaurant wholesalers.[40]

    Since the system lives in a greenhouse, it adapts to almost all temperate climates, and may also adapt to tropical climates. The main environmental impact is discharge of water that must be salted to maintain the fishes’ electrolyte balance. Current growers use a variety of proprietary tricks to keep fish healthy, reducing their expenses for salt and wastewater discharge permits. Some veterinary authorities speculate that ultraviolet ozone disinfectant systems (widely used for ornamental fish) may play a prominent part in keeping the tilapia healthy with recirculated water.[citation needed]

    A number of large, well-capitalized ventures in this area have failed. Managing both the biology and markets is complicated. One future development is the combination of integrated recycling systems with urban farming as tried in Sweden by the Greenfish Initiative.[41][42]

    Classic fry farming

    [edit]

    This is also called a “flow through system” .[43] Trout and other sport fish are often raised from eggs to fry or fingerlings and then trucked to streams and released. Normally, the fry are raised in long, shallow, concrete tanks, fed with fresh stream water. The fry receive commercial fish food in pellets. While not as efficient as the New Alchemists’ method, it is also far simpler and has been used for many years to stock streams with sport fish. European eel (Anguilla anguilla) aquaculturalists procure a limited supply of glass eels, juvenile stages of the European eel which swim north from the Sargasso Sea breeding grounds, for their farms. The European eel is threatened with extinction because of the excessive catch of glass eels by Spanish fishermen and overfishing of adult eels in, e.g., the Dutch IJsselmeer. Although European eel larvae can survive for several weeks, the full life cycle has not yet been achieved in captivity.[44]

    Issues

    [edit]

    See also: Aquaculture of salmon § Issues

    Food typesEutrophying emissions (g PO43-eq per 100g protein)
    Beef365.3
    Farmed fish235.1
    Farmed crustaceans227.2
    Cheese98.4
    Lamb and mutton97.1
    Pork76.4
    Poultry48.7
    Eggs21.8
    Groundnuts14.1
    Peas7.5
    Tofu6.2
    Food typesGreenhouse gas emissions (g CO2-Ceq per g protein)
    Ruminant meat62
    Recirculating aquaculture30
    Trawling Fishery26
    Non-recirculating aquaculture12
    Pork10
    Poultry10
    Dairy9.1
    Non-trawling fishery8.6
    Eggs6.8
    Starchy roots1.7
    Wheat1.2
    Maize1.2
    Legumes0.25

    Welfare

    [edit]

    There is a growing consensus that fish can feel pain.[47][48] Despite the vast number of fish consumed, fish welfare has historically received little attention.[49]

    Farmed fish are usually raised in overcrowded environments, making them susceptible to stress, injuries, aggression and diseases. These conditions prevent them from engaging in natural behaviors such as nesting or migration. Overcrowding often leads to poor water quality due to fish waste and antibiotics use. Sea lice infestations are common and can cause painful lesion, but are typically treated with harsh chemicals. Additionally, fish are genetically engineered to grow larger and faster, leading to health problems such as cataracts and abnormal heart shapes.[49]

    Feeding

    [edit]

    Food typesAcidifying emissions (g SO2eq per 100g protein)
    Beef343.6
    Cheese165.5
    Pork142.7
    Lamb and mutton139.0
    Farmed crustaceans133.1
    Poultry102.4
    Farmed fish65.9
    Eggs53.7
    Groundnuts22.6
    Peas8.5
    Tofu6.7

    The issue of feeds in fish farming has been a controversial one. Many cultured fishes (tilapia, carp, catfish, many others) can be raised on a strictly herbivorous diet. Top-level carnivores (most salmonidae species in particular) on the other hand, depend on fish feed, of which a large portion is usually derived from wild-caught fish (anchoviesmenhaden, etc.). Vegetable-derived proteins have successfully replaced fish meal in feeds for carnivorous fishes, but vegetable-derived oils have not successfully been incorporated into the diets of carnivores. Research is underway to try to change this, such that even salmon and other carnivores could be successfully fed with vegetable products. The F3 Challenge (Fish-Free Feed Challenge),[50] as explained by a report from Wired in February 2017, “is a race to sell 100,000 metric tons of fish food, without the fish. Earlier this month, start-ups from places like Pakistan, China, and Belgium joined their American competition at the Google headquarters in Mountain View, California, showing off feed made from seaweed extracts, yeast, and algae grown in bioreactors.”[51]

    Not only do the feeds for carnivorous fish, like certain salmon species, remain controversial due to the containment of wild caught fish like anchovies, but they are not helping the health of the fish, as is the case in Norway. Between 2003 and 2007, Aldrin et al. examined three infectious diseases in Norwegian salmon fish farms—heart and skeletal muscle inflammation, pancreas disease, and infectious salmon anemia.[52]

    In 2014, Martinez-Rubio et al. conducted a study in which cardiomyopathy syndrome (CMS), a severe cardiac disease in Atlantic salmon (Salmo salar), was investigated pertaining the effects of functional feeds with reduced lipid content and increased eicosapentaenoic acid levels in controlling CMS in salmon after infection with Piscine Myocarditis Virus (PMCV). Functional feeds are defined as high-quality feeds that beyond purposes of nutrition, they are formulated with health promoting features that could be beneficial in supporting disease resistance, such as CMS. Choosing a clinical nutrition approach using functional feeds could potentially move away from chemotherapeutic and antibiotic treatments, which could lower the costs of disease treatment and management in fish farms. In this investigation three fishmeal-based diets were served—one made of 31% lipid and the other two made of 18% lipid (one contained fishmeal and the other krill meal. Results demonstrated a significant difference in the immune and inflammatory responses and pathology in heart tissue as the fish were infected with PMCV. Fish fed with functional feeds with low lipid content demonstrated milder and delayed inflammatory response and therefore, less severe heart lesions at earlier and later stages after PMCV infection.[53]

    Stocking density

    [edit]

    Secondly, farmed fish are kept in concentrations never seen in the wild (e.g. 50,000 fish in a 2-acre (8,100 m2) area.[54]). However, fish tend also to be animals that aggregate into large schools at high density. Most successful aquaculture species are schooling species, which do not have social problems at high density. Aquaculturists feel that operating a rearing system above its design capacity or above the social density limit of the fish will result in decreased growth rate and increased feed conversion ratio (kg dry feed/kg of fish produced), which results in increased cost and risk of health problems along with a decrease in profits. Stressing the animals is not desirable, but the concept of and measurement of stress must be viewed from the perspective of the animal using the scientific method.[55]

    Parasites and disease

    [edit]

    Sea lice, particularly Lepeophtheirus salmonis and various Caligus species, including C. clemensi and C. rogercresseyi, can cause deadly infestations of both farm-grown and wild salmon.[56][57] Sea lice are ectoparasites which feed on mucus, blood, and skin, and migrate and latch onto the skin of wild salmon during free-swimming, planktonic nauplii and copepodid larval stages, which can persist for several days.[58][59][60] Large numbers of highly populated, open-net salmon farms can create exceptionally large concentrations of sea lice; when exposed in river estuaries containing large numbers of open-net farms, many young wild salmon are infected, and do not survive as a result.[61][62] Adult salmon may survive otherwise critical numbers of sea lice, but small, thin-skinned juvenile salmon migrating to sea are highly vulnerable. On the Pacific coast of Canada, the louse-induced mortality of pink salmon in some regions is commonly over 80%.[63] In Scotland, official figures show that more than nine million fish were lost to disease, parasites, botched treatment attempts and other problems on fish farms between 2016 and 2019.[64] One of the treatments for parasite infestations involved bathing fish in hydrogen peroxide,[65] which can harm or kill farmed fish if they are in a weak condition or if the chemical concentration is too strong.

    A 2008 meta-analysis of available data shows that salmon farming reduces the survival of associated wild salmon populations. This relationship has been shown to hold for Atlantic, steelhead, pink, chum, and coho salmon. The decrease in survival or abundance often exceeds 50%.[66]

    Diseases and parasites are the most commonly cited reasons for such decreases. Some species of sea lice have been noted to target farmed coho and Atlantic salmon.[67] Such parasites have been shown to have an effect on nearby wild fish. One place that has garnered international media attention is British Columbia’s Broughton Archipelago. There, juvenile wild salmon must “run a gauntlet” of large fish farms located off-shore near river outlets before making their way to sea. The farms allegedly cause such severe sea lice infestations that one study predicted in 2007 a 99% collapse in the wild salmon population by 2011.[68] This claim, however, has been criticized by numerous scientists who question the correlation between increased fish farming and increases in sea lice infestation among wild salmon.[69]

    Because of parasite problems, some aquaculture operators frequently use strong antibiotic drugs to keep the fish alive, but many fish still die prematurely at rates up to 30%.[70] Additionally, other common drugs used in salmonid fish farms in North America and Europe include anesthetic, chemotherapeutic, and anthelmintic agents.[71] In some cases, these drugs have entered the environment.[72] Additionally, the residual presence of these drugs in human food products has become controversial. Use of antibiotics in food production is thought to increase the prevalence of antibiotic resistance in human diseases.[73] At some facilities, the use of antibiotic drugs in aquaculture has decreased considerably due to vaccinations and other techniques.[74] However, most fish-farming operations still use antibiotics, many of which escape into the surrounding environment.[75]

    The lice and pathogen problems of the 1990s facilitated the development of current treatment methods for sea lice and pathogens, which reduced the stress from parasite/pathogen problems. However, being in an ocean environment, the transfer of disease organisms from the wild fish to the aquaculture fish is an ever-present risk.[76]

    North American lake trout fishing farm on Lake Titicaca near CopacabanaBolivia. Since their introduction in the 1930s, trout have been an invasive species endangering the local fish population.[77]

    Ecosystem impacts

    [edit]

    The large number of fish kept long-term in a single location contributes to habitat destruction of the nearby areas.[78] The high concentrations of fish produce a significant amount of condensed faeces, often contaminated with drugs, which again affects local waterways.

    Aquaculture not only impacts the fish on the farm, but it also influences other species, which in return are attracted to or repelled by the farms.[79] Mobile fauna, such as crustaceans, fish, birds, and marine mammals, interact with the process of aquaculture, but the long-term or ecological effects as a result of these interactions is still unknown. Some of these fauna may be attracted or demonstrate repulsion.[79] The attraction/repulsion mechanism has various direct and indirect effects on wild organisms at individual and population levels. The interactions that wild organisms have with aquaculture may have implications on the management of fisheries species and the ecosystem in relation to how the fish farms are structured and organized.[79]

    Siting

    [edit]

    If aquaculture farms are placed in an area with strong current, pollutants can be flushed out of the area fairly quickly.[citation needed] This helps manage the pollution problem and also aids in overall fish growth. Concern remains that resultant bacterial growth fertilised by fish faeces strips the water of oxygen, reducing or killing off the local marine life. Once an area has been so contaminated, fish farms are typically moved to new, uncontaminated areas. This practice has angered nearby fishermen.[80]

    Other potential problems faced by aquaculturists include the obtaining of various permits and water-use rights, profitability, concerns about invasive species and genetic engineering depending on what species are involved, and interaction with the United Nations Convention on the Law of the Sea.

    Genetic engineering

    [edit]

    In regards to genetically engineered, farmed salmon, concern has been raised over their proven reproductive advantage and how it could potentially decimate local fish populations, if released into the wild. Biologist Rick Howard did a controlled laboratory study where wild fish and genetically engineered fish were allowed to breed.[81] In 1989, AquaBounty Technologies developed the AquAdvantage salmon. The concerns and critiques of cultivating this genetically engineered fish in aquaculture are that the fish will escape and interact with other fish ultimately leading to the reproduction with other fishes. However, the FDA, has determined that while net pens would not be the most appropriate to prevent escapes, raising the salmon in Panama waters would effectively prevent escape because the water conditions there would fail to support long-term survival of any escaped salmon.[82] Another method of preventing Aqua Advantage fish from impacting the ecosystems in the case they escape suggested by the FDA was to create sterile triploid females. This way concerns on reproducing with other fishes would be out of the question.[82] The genetically engineered fish crowded out the wild fish in spawning beds, but the offspring were less likely to survive. The colorant used to make pen-raised salmon appear rosy like the wild fish has been linked with retinal problems in humans.[80]

    Labeling

    [edit]

    In 2005, Alaska passed legislation requiring that any genetically altered fish sold in the state be labeled.[83] In 2006, a Consumer Reports investigation revealed that farm-raised salmon is frequently sold as wild.[84]

    In 2008, the US National Organic Standards Board allowed farmed fish to be labeled as organic provided less than 25% of their feed came from wild fish. This decision was criticized by the advocacy group Food & Water Watch as “bending the rules” about organic labeling.[85] In the European Union, fish labeling as to species, method of production and origin has been required since 2002.[86]

    Concerns continue over the labeling of salmon as farmed or wild-caught, as well as about the humane treatment of farmed fish. The Marine Stewardship Council has established an Eco label to distinguish between farmed and wild-caught salmon,[87] while the RSPCA has established the Freedom Food label to indicate humane treatment of farmed salmon, as well as other food products.[86]

    Indoor fish farming

    [edit]

    Other treatments such as ultraviolet sterilization, ozonation, and oxygen injection are also used to maintain optimal water quality. Through this system, many of the environmental drawbacks of aquaculture are minimized including escaped fish, water usage, and the introduction of pollutants. The practices also increased feed-use efficiency growth by providing optimum water quality.[88]

    One of the drawbacks to recirculating aquaculture systems is the need for periodic water exchanges. However, the rate of water exchange can be reduced through aquaponics, such as the incorporation of hydroponically grown plants[89] and denitrification.[90] Both methods reduce the amount of nitrate in the water, and can potentially eliminate the need for water exchanges, closing the aquaculture system from the environment. The amount of interaction between the aquaculture system and the environment can be measured through the cumulative feed burden (CFB kg/M3), which measures the amount of feed that goes into the RAS relative to the amount of water and waste discharged. The environmental impact of larger indoor fish farming system will be linked to the local infrastructure, and water supply. Areas which are more drought-prone, indoor fish farms might flow out wastewater for watering agricultural farms, reducing the water affliction.[91]

    From 2011, a team from the University of Waterloo led by Tahbit Chowdhury and Gordon Graff examined vertical RAS aquaculture designs aimed at producing protein-rich fish species.[92][93] However, because of its high capital and operating costs, RAS has generally been restricted to practices such as broodstock maturation, larval rearing, fingerling production, research animal production, specific pathogen-free animal production, and caviar and ornamental fish production. As such, research and design work by Chowdhury and Graff remains difficult to implement. Although the use of RAS for other species is considered by many aquaculturalists to be currently impractical, some limited successful implementation of RAS has occurred with high-value product such as barramundisturgeon, and live tilapia in the US,[94][95][96][97][98] eels and catfish in the Netherlands, trout in Denmark[99] and salmon is planned in Scotland[100] and Canada.[101]

    Slaughter methods

    [edit]

    Main article: Fish welfare at slaughter

    Tanks saturated with carbon dioxide have been used to make fish unconscious. Their gills are then cut with a knife so that the fish bleed out before they are further processed. This is no longer considered a humane method of slaughter. Methods that induce much less physiological stress are electrical or percussive stunning and this has led to the phasing out of the carbon dioxide slaughter method in Europe.[102]

    Inhumane methods

    [edit]

    According to T. Håstein of the National Veterinary Institute (Oslo, Norway), “Different methods for slaughter of fish are in place and it is no doubt that many of them may be considered as appalling from an animal welfare point of view.”[103] A 2004 report by the EFSA Scientific Panel on Animal Health and Welfare explained: “Many existing commercial killing methods expose fish to substantial suffering over a prolonged period of time. For some species, existing methods, whilst capable of killing fish humanely, are not doing so because operators don’t have the knowledge to evaluate them.”[104] Following are some less humane ways of killing fish.

    • Air asphyxiation amounts to suffocation in the open air. The process can take upwards of 15 minutes to induce death, although unconsciousness typically sets in sooner.[105]
    • Ice baths or chilling of farmed fish on ice or submerged in near-freezing water is used to dampen muscle movements by the fish and to delay the onset of post-death decay. However, it does not necessarily reduce sensibility to pain; indeed, the chilling process has been shown to elevate cortisol. In addition, reduced body temperature extends the time before fish lose consciousness.[106]
    • CO2 narcosis
    • Exsanguination without stunning is a process in which fish are taken up from water, held still, and cut so as to cause bleeding. According to references in Yue,[107] this can leave fish writhing for an average of four minutes, and some catfish still responded to noxious stimuli after more than 15 minutes.
    • Immersion in salt followed by gutting or other processing such as smoking is applied to eel.[108]

    More humane methods

    [edit]

    Proper stunning renders the fish unconscious immediately and for a sufficient period of time such that the fish is killed in the slaughter process (e.g. through exsanguination) without regaining consciousness.

    • Percussive stunning involves rendering the fish unconscious with a blow on the head.
    • Electric stunning can be humane when a proper current is made to flow through the fish brain for a sufficient period of time. Electric stunning can be applied after the fish has been taken out of the water (dry stunning) or while the fish is still in the water. The latter generally requires a much higher current and may lead to operator safety issues. An advantage could be that in-water stunning allows fish to be rendered unconscious without stressful handling or displacement.[109] However, improper stunning may not induce insensibility long enough to prevent the fish from enduring exsanguination while conscious.[104] Whether the optimal stunning parameters that researchers have determined in studies are used by the industry in practice is unknown.[109]

    [edit]

    • Fish farming in the fjords of southern Chile
    • Houseboat rafts with cages under for rearing fish near Mỹ Tho, Vietnam
    • Transport boats moored at fish processing plant, Mỹ Tho
    • Communal Zapotec fish farm in Ixtlán de Juárez, Mexico
    • Fish farming traditionally takes place in purpose-built tanks in the Skardu region in northern Pakistan.
    • Pisciculture Complex, outside Rio Branco, Brazil
    • Fish farm Högtind in Norway with feeding barge
  • Fish

    fish (pl.: fish or fishes) is an aquaticanamnioticgill-bearing vertebrate animal with swimming fins and a hard skull, but lacking limbs with digits. Fish can be grouped into the more basal jawless fish and the more common jawed fish, the latter including all living cartilaginous and bony fish, as well as the extinct placoderms and acanthodians. In a break to the long tradition of grouping all fish into a single class (Pisces), modern phylogenetics views fish as a paraphyletic group.

    Most fish are cold-blooded, their body temperature varying with the surrounding water, though some large active swimmers like white shark and tuna can hold a higher core temperature. Many fish can communicate acoustically with each other, such as during courtship displays. The study of fish is known as ichthyology.

    The earliest fish appeared during the Cambrian as small filter feeders; they continued to evolve through the Paleozoic, diversifying into many forms. The earliest fish with dedicated respiratory gills and paired fins, the ostracoderms, had heavy bony plates that served as protective exoskeletons against invertebrate predators. The first fish with jaws, the placoderms, appeared in the Silurian and greatly diversified during the Devonian, the “Age of Fishes”.

    Bony fish, distinguished by the presence of swim bladders and later ossified endoskeletons, emerged as the dominant group of fish after the end-Devonian extinction wiped out the apex predators, the placoderms. Bony fish are further divided into the lobe-finned and ray-finned fish. About 96% of all living fish species today are teleosts, a crown group of ray-finned fish that can protrude their jaws. The tetrapods, a mostly terrestrial clade of vertebrates that have dominated the top trophic levels in both aquatic and terrestrial ecosystems since the Late Paleozoic, evolved from lobe-finned fish during the Carboniferous, developing air-breathing lungs homologous to swim bladders. Despite the cladistic lineage, tetrapods are usually not considered to be fish.

    Fish have been an important natural resource for humans since prehistoric times, especially as foodCommercial and subsistence fishers harvest fish in wild fisheries or farm them in ponds or in breeding cages in the ocean. Fish are caught for recreation, or raised by fishkeepers as ornaments for private and public exhibition in aquaria and garden ponds. Fish have had a role in human culture through the ages, serving as deities, religious symbols, and as the subjects of art, books and movies.

    Etymology

    [edit]

    The word fish is inherited from Proto-Germanic, and is related to German Fisch, the Latin piscis and Old Irish īasc, though the exact root is unknown; some authorities reconstruct a Proto-Indo-European root *peysk-, attested only in ItalicCeltic, and Germanic.[1][2][3][4]

    Evolution

    [edit]

    Main article: Evolution of fish

    Fossil history

    [edit]

    Further information: Timeline of fish evolution

    Dunkleosteus was a giant Devonian armoured placoderm, c. 400 mya.

    About 530 million years ago during the Cambrian explosion, fishlike animals with a notochord and eyes at the front of the body, such as Haikouichthys, appear in the fossil record.[5] During the late Cambrian, other jawless forms such as conodonts appear.[6][7]

    Jawed vertebrates appear in the Silurian, with giant armoured placoderms such as Dunkleosteus.[8] Jawed fish, too, appeared during the Silurian:[9] the cartilaginous Chondrichthyes[10][11] and the bony Osteichthyes.[12]

    During the Devonian, fish diversity greatly increased, including among the placoderms, lobe-finned fishes, and early sharks, earning the Devonian the epithet “the age of fishes”.[13][14]

    Phylogeny

    [edit]

    Fishes are a paraphyletic group, since any clade containing all fish, such as the Gnathostomata or (for bony fish) Osteichthyes, also contains the clade of tetrapods (four-limbed vertebrates, mostly terrestrial), which are usually not considered fish.[15][16] Some tetrapods, such as cetaceans and ichthyosaurs, have secondarily acquired a fish-like body shape through convergent evolution.[17] On the other hand, Fishes of the World comments that “it is increasingly widely accepted that tetrapods, including ourselves, are simply modified bony fishes, and so we are comfortable with using the taxon Osteichthyes as a clade, which now includes all tetrapods”.[16] The biodiversity of extant fish is unevenly distributed among the various groups; teleosts, bony fishes able to protrude their jaws, make up 96% of fish species.[18][16] The cladogram[19] shows the evolutionary relationships of all groups of living fishes (with their respective diversity[16]) and the tetrapods.[20] Extinct groups are marked with a dagger (†); groups of uncertain placement[19] are labelled with a question mark (?) and dashed lines (- – – – -).

    VertebratesJawless fishes (118 species: hagfishlampreys?†Thelodonti, †Conodonta, †Anaspida   Galeaspida Osteostraci JawedPlacodermi ?†Acanthodii Chondrichthyes(>1,100 species: sharksrayschimaerasOsteichthyesLobe-finned fishActinistia(2 species: coelacanthsRhipidistiaDipnoi (6 species: lungfishTetrapoda (>38,000 species, not considered fish: amphibians, reptiles, birds, mammals) Ray-finned fishCladistia(14 species: bichirsreedfishActinopteriChondrostei(27 species: sturgeonspaddlefishNeopterygiiHolosteiGinglymodi (7 species: garsalligator garsHalecomorphi (2 species: bowfineyetail bowfinTeleostei(>32,000 species) vertebrates

    Taxonomy

    [edit]

    Main article: Taxonomy of fish

    Fishes (without tetrapods) are a paraphyletic group and for this reason, the class Pisces seen in older reference works is no longer used in formal classifications. Traditional classification divides fish into three extant classes (Agnatha, Chondrichthyes, and Osteichthyes), and with extinct forms sometimes classified within those groups, sometimes as their own classes.[21]

    Fish account for more than half of vertebrate species. As of 2016, there are over 32,000 described species of bony fish, over 1,100 species of cartilaginous fish, and over 100 hagfish and lampreys. A third of these fall within the nine largest families; from largest to smallest, these are CyprinidaeGobiidaeCichlidaeCharacidaeLoricariidaeBalitoridaeSerranidaeLabridae, and Scorpaenidae. About 64 families are monotypic, containing only one species.[16]

    Diversity

    [edit]

    Main article: Diversity of fish

    Fish range in size from the huge 16-metre (52 ft) whale shark[22] to some tiny teleosts only 8-millimetre (0.3 in) long, such as the cyprinid Paedocypris progenetica[23] and the stout infantfish.[24]

    Swimming performance varies from fish such as tuna, salmon, and jacks that can cover 10–20 body-lengths per second to species such as eels and rays that swim no more than 0.5 body-lengths per second.[25]

    • Fastest: e.g. salmon, 10–20 body lengths/second
    • Slowest: e.g. eel, 0.5 body lengths/second

    A typical fish is cold-blooded, has a streamlined body for rapid swimming, extracts oxygen from water using gills, has two sets of paired fins, one or two dorsal fins, an anal fin and a tail fin, jaws, skin covered with scales, and lays eggs. Each criterion has exceptions, creating a wide diversity in body shape and way of life. For example, some fast-swimming fish are warm-blooded, while some slow-swimming fish have abandoned streamlining in favour of other body shapes.[26]

    Ecology

    [edit]

    Habitats

    [edit]

    Different fish species are adapted to a wide variety of freshwater and marine habitats.

    Fish species are roughly divided equally between freshwater and marine (oceanic) ecosystems; there are some 15,200 freshwater species and around 14,800 marine species.[27] Coral reefs in the Indo-Pacific constitute the center of diversity for marine fishes,[28] whereas continental freshwater fishes are most diverse in large river basins of tropical rainforests, especially the AmazonCongo, and Mekong basins.[29] More than 5,600 fish species inhabit Neotropical freshwaters alone, such that Neotropical fishes represent about 10% of all vertebrate species on the Earth.[30]

    Fish are abundant in most bodies of water. They can be found in nearly all aquatic environments, from high mountain streams (e.g., char and gudgeon) to the abyssal and even hadal depths of the deepest oceans (e.g., cusk-eels and snailfish), although none have been found in the deepest 25% of the ocean.[31] The deepest living fish in the ocean so far found is a cusk-eel, Abyssobrotula galatheae, recorded at the bottom of the Puerto Rico Trench at 8,370 m (27,460 ft).[32]

    In terms of temperature, Jonah’s icefish live in cold[a] waters of the Southern Ocean, including under the Filchner–Ronne Ice Shelf at a latitude of 79°S,[34] while desert pupfish live in desert springs, streams, and marshes, sometimes highly saline, with water temperatures as high as 36 C.[35][36]

    A few fish live mostly on land or lay their eggs on land near water.[37] Mudskippers feed and interact with one another on mudflats and go underwater to hide in their burrows.[38] A single undescribed species of Phreatobius has been called a true “land fish” as this worm-like catfish strictly lives among waterlogged leaf litter.[39][40] Cavefish of multiple families live in underground lakesunderground rivers or aquifers.[41]

    Parasites and predators

    [edit]

    Further information: Fish diseases and parasites and Predatory fish

    Like other animals, fish suffer from parasitism. Some species use cleaner fish to remove external parasites. The best known of these are the bluestreak cleaner wrasses of coral reefs in the Indian and Pacific oceans. These small fish maintain cleaning stations where other fish congregate and perform specific movements to attract the attention of the cleaners.[42] Cleaning behaviors have been observed in a number of fish groups, including an interesting case between two cichlids of the same genus, Etroplus maculatus, the cleaner, and the much larger E. suratensis.[43]

    Fish occupy many trophic levels in freshwater and marine food webs. Fish at the higher levels are predatory, and a substantial part of their prey consists of other fish.[44] In addition, mammals such as dolphins and seals feed on fish, alongside birds such as gannets and cormorants.[45]

    Anatomy and physiology

    [edit]

    Main articles: Fish anatomy and Fish physiology

    Locomotion

    [edit]

    Main article: Fish locomotion

    The body of a typical fish is adapted for efficient swimming by alternately contracting paired sets of muscles on either side of the backbone. These contractions form S-shaped curves that move down the body. As each curve reaches the tail fin, force is applied to the water, moving the fish forward. The other fins act as control surfaces like an aircraft’s flaps, enabling the fish to steer in any direction.[46]

    Since body tissue is denser than water, fish must compensate for the difference or they will sink. Many bony fish have an internal organ called a swim bladder that allows them to adjust their buoyancy by increasing or decreasing the amount of gas it contains.[47]

    The scales of fish provide protection from predators at the cost of adding stiffness and weight.[48] Fish scales are often highly reflective; this silvering provides camouflage in the open ocean. Because the water all around is the same colour, reflecting an image of the water offers near-invisibility.[49]

    Circulation

    [edit]

    The fish heart pumps blood to the gills, where it picks up oxygen. The blood then flows without further pumping to the body, from where it returns to the heart.

    Fish have a closed-loop circulatory system. The heart pumps the blood in a single loop throughout the body; for comparison, the mammal heart has two loops, one for the lungs to pick up oxygen, one for the body to deliver the oxygen. In fish, the heart pumps blood through the gills. Oxygen-rich blood then flows without further pumping, unlike in mammals, to the body tissues. Finally, oxygen-depleted blood returns to the heart.[50]

    Respiration

    [edit]

    Gills

    [edit]

    Main article: Fish gill

    Fish exchange gases using gills on either side of the pharynx. Gills consist of comblike structures called filaments. Each filament contains a capillary network that provides a large surface area for exchanging oxygen and carbon dioxide. Fish exchange gases by pulling oxygen-rich water through their mouths and pumping it over their gills. Capillary blood in the gills flows in the opposite direction to the water, resulting in efficient countercurrent exchange. The gills push the oxygen-poor water out through openings in the sides of the pharynx. Cartilaginous fish have multiple gill openings: sharks usually have five, sometimes six or seven pairs; they often have to swim to oxygenate their gills. Bony fish have a single gill opening on each side, hidden beneath a protective bony cover or operculum. They are able to oxygenate their gills using muscles in the head.[51]

    Air breathing

    [edit]

    Further information: amphibious fish

    Some 400 species of fish in 50 families can breathe air, enabling them to live in oxygen-poor water or to emerge on to land.[52] The ability of fish to do this is potentially limited by their single-loop circulation, as oxygenated blood from their air-breathing organ will mix with deoxygenated blood returning to the heart from the rest of the body. Lungfish, bichirs, ropefish, bowfins, snakefish, and the African knifefish have evolved to reduce such mixing, and to reduce oxygen loss from the gills to oxygen-poor water. Bichirs and lungfish have tetrapod-like paired lungs, requiring them to surface to gulp air, and making them obligate air breathers. Many other fish, including inhabitants of rock pools and the intertidal zone, are facultative air breathers, able to breathe air when out of water, as may occur daily at low tide, and to use their gills when in water. Some coastal fish like rockskippers and mudskippers choose to leave the water to feed in habitats temporarily exposed to the air.[52] Some catfish absorb air through their digestive tracts.[53]

    Digestion

    [edit]

    The digestive system consists of a tube, the gut, leading from the mouth to the anus. The mouth of most fishes contains teeth to grip prey, bite off or scrape plant material, or crush the food. An esophagus carries food to the stomach where it may be stored and partially digested. A sphincter, the pylorus, releases food to the intestine at intervals. Many fish have finger-shaped pouches, pyloric caeca, around the pylorus, of doubtful function. The pancreas secretes enzymes into the intestine to digest the food; other enzymes are secreted directly by the intestine itself. The liver produces bile which helps to break up fat into an emulsion which can be absorbed in the intestine.[54]

    Excretion

    [edit]

    Most fish release their nitrogenous wastes as ammonia. This may be excreted through the gills or filtered by the kidneys. Salt is excreted by the rectal gland.[55] Saltwater fish tend to lose water by osmosis; their kidneys return water to the body, and produce a concentrated urine. The reverse happens in freshwater fish: they tend to gain water osmotically, and produce a dilute urine. Some fish have kidneys able to operate in both freshwater and saltwater.[56]

    Brain

    [edit]

    Diagram showing the pairs of olfactory, telencephalon, and optic lobes, followed by the cerebellum and the mylencephalon
    Diagram of rainbow trout brain, from above

    Fish have small brains relative to body size compared with other vertebrates, typically one-fifteenth the brain mass of a similarly sized bird or mammal.[57] However, some fish have relatively large brains, notably mormyrids and sharks, which have brains about as large for their body weight as birds and marsupials.[58] At the front of the brain are the olfactory lobes, a pair of structures that receive and process signals from the nostrils via the two olfactory nerves. Fish that hunt primarily by smell, such as hagfish and sharks, have very large olfactory lobes. Behind these is the telencephalon, which in fish deals mostly with olfaction. Together these structures form the forebrain. Connecting the forebrain to the midbrain is the diencephalon; it works with hormones and homeostasis. The pineal body is just above the diencephalon; it detects light, maintains circadian rhythms, and controls color changes. The midbrain contains the two optic lobes. These are very large in species that hunt by sight, such as rainbow trout and cichlids. The hindbrain controls swimming and balance.The single-lobed cerebellum is the biggest part of the brain; it is small in hagfish and lampreys, but very large in mormyrids, processing their electrical sense. The brain stem or myelencephalon controls some muscles and body organs, and governs respiration and osmoregulation.[57]

    Sensory systems

    [edit]

    Main article: Sensory systems in fish

    The lateral line system is a network of sensors in the skin which detects gentle currents and vibrations, and senses the motion of nearby fish, whether predators or prey.[59] This can be considered both a sense of touch and of hearingBlind cave fish navigate almost entirely through the sensations from their lateral line system.[60] Some fish, such as catfish and sharks, have the ampullae of Lorenzinielectroreceptors that detect weak electric currents on the order of millivolt.[61]

    Vision is an important sensory system in fish.[62] Fish eyes are similar to those of terrestrial vertebrates like birds and mammals, but have a more spherical lens.[62] Their retinas generally have both rods and cones (for scotopic and photopic vision); many species have colour vision, often with three types of cone.[62] Teleosts can see polarized light;[63] some such as cyprinids have a fourth type of cone that detects ultraviolet.[62] Amongst jawless fish, the lamprey has well-developed eyes,[64] while the hagfish has only primitive eyespots.[65]

    Hearing too is an important sensory system in fish. Fish sense sound using their lateral lines and otoliths in their ears, inside their heads. Some can detect sound through the swim bladder.[66]

    Some fish, including salmon, are capable of magnetoreception; when the axis of a magnetic field is changed around a circular tank of young fish, they reorient themselves in line with the field.[67][68] The mechanism of fish magnetoreception remains unknown;[69] experiments in birds imply a quantum radical pair mechanism.[70]

    Cognition

    [edit]

    Further information: Fish intelligence

    The cognitive capacities of fish include self-awareness, as seen in mirror testsManta rays and wrasses placed in front of a mirror repeatedly check whether their reflection’s behavior mimics their body movement.[71][72] Choerodon wrasse, archerfish, and Atlantic cod can solve problems and invent tools.[73] The monogamous cichlid Amatitlania siquia exhibits pessimistic behavior when prevented from being with its partner.[74] Fish orient themselves using landmarks; they may use mental maps based on multiple landmarks. Fish are able to learn to traverse mazes, showing that they possess spatial memory and visual discrimination.[75] Behavioral research suggests that fish are sentient, capable of experiencing pain.[76]

    Electrogenesis

    [edit]

    The elephantnose fish is a weakly electric fish which generates an electric field with its electric organ and then uses its electroreceptive organs to locate objects by the distortions they cause in its electric field.[77]

    Further information: Electroreception and electrogenesis

    Electric fish such as elephantfishes, the African knifefish, and electric eels have some of their muscles adapted to generate electric fields. They use the field to locate and identify objects such as prey in the waters around them, which may be turbid or dark.[61] Strongly electric fish like the electric eel can in addition use their electric organs to generate shocks powerful enough to stun their prey.[78]

    Endothermy

    [edit]

    Most fish are exclusively cold-blooded or ectothermic. However, the Scombroidei are warm-blooded (endothermic), including the billfishes and tunas.[79] The opah, a lampriform, uses whole-body endothermy, generating heat with its swimming muscles to warm its body while countercurrent exchange minimizes heat loss.[80] Among the cartilaginous fishes, sharks of the families Lamnidae (such as the great white shark) and Alopiidae (thresher sharks) are endothermic. The degree of endothermy varies from the billfishes, which warm only their eyes and brain, to the bluefin tuna and the porbeagle shark, which maintain body temperatures more than 20 °C (68 °F) above the ambient water.[79][81][82]

    Reproduction and life-cycle

    [edit]

    Main article: Fish reproduction

    Salmon fry hatching from the egg, keeping its yolk sac

    The primary reproductive organs are paired testicles and ovaries.[83] Eggs are released from the ovary to the oviducts.[84] Over 97% of fish, including salmon and goldfish, are oviparous, meaning that the eggs are shed into the water and develop outside the mother’s body.[85] The eggs are usually fertilized outside the mother’s body, with the male and female fish shedding their gametes into the surrounding water. In a few oviparous fish, such as the skates, fertilization is internal: the male uses an intromittent organ to deliver sperm into the female’s genital opening of the female.[86] Marine fish release large numbers of small eggs into the open water column. Newly hatched young of oviparous fish are planktonic larvae. They have a large yolk sac and do not resemble juvenile or adult fish. The larval period in oviparous fish is usually only some weeks, and larvae rapidly grow and change in structure to become juveniles. During this transition, larvae must switch from their yolk sac to feeding on zooplankton prey.[86] Some fish such as surf-perchessplitfins, and lemon sharks are viviparous or live-bearing, meaning that the mother retains the eggs and nourishes the embryos via a structure analogous to the placenta to connect the mother’s blood supply with the embryo’s.[86]

    DNA repair

    [edit]

    Embryos of externally fertilized fish species are directly exposed during their development to environmental conditions that may damage their DNA, such as pollutants, UV light and reactive oxygen species.[87] To deal with such DNA damages, a variety of different DNA repair pathways are employed by fish embryos during their development.[87] In recent years zebrafish have become a useful model for assessing environmental pollutants that might be genotoxic, i.e. cause DNA damage.[88]

    Defenses against disease

    [edit]

    Further information: Immune system

    Fish have both non-specific and immune defenses against disease. Non-specific defenses include the skin and scales, as well as the mucus layer secreted by the epidermis that traps and inhibits the growth of microorganisms. If pathogens breach these defenses, the innate immune system can mount an inflammatory response that increases blood flow to the infected region and delivers white blood cells that attempt to destroy pathogens, non-specifically. Specific defenses respond to particular antigens, such as proteins on the surfaces of pathogenic bacteria, recognised by the adaptive immune system.[89] Immune systems evolved in deuterostomes as shown in the cladogram.[90]

    DeuterostomesEchinodermshemichordatescephalochordatesurochordatesVertebratesJawless fishesVLR adaptive immunityJawed fishes and tetrapodsV(D)J adaptive immunity
    innate immunity

    Immune organs vary by type of fish. The jawless fish have lymphoid tissue within the anterior kidney, and granulocytes in the gut. They have their own type of adaptive immune system; it makes use of variable lymphocyte receptors (VLR) to generate immunity to a wide range of antigens, The result is much like that of jawed fishes and tetrapods, but it may have evolved separately.[90] All jawed fishes have an adaptive immune system with B and T lymphocytes bearing immunoglobulins and T cell receptors respectively. This makes use of Variable–Diversity–Joining rearrangement (V(D)J) to create immunity to a wide range of antigens. This system evolved once and is basal to the jawed vertebrate clade.[90] Cartilaginous fish have three specialized organs that contain immune system cells: the epigonal organs around the gonads, Leydig’s organ within the esophagus, and a spiral valve in their intestine, while their thymus and spleen have similar functions to those of the same organs in the immune systems of tetrapods.[91] Teleosts have lymphocytes in the thymus, and other immune cells in the spleen and other organs.[92][93]

    Behavior

    [edit]

    Shoaling and schooling

    [edit]

    Main article: Shoaling and schooling

    Fish such as these snipefishes school for safety from predators, and to spawn.[94]

    shoal is a loosely organised group where each fish swims and forages independently but is attracted to other members of the group and adjusts its behaviour, such as swimming speed, so that it remains close to the other members of the group. A school is a much more tightly organised group, synchronising its swimming so that all fish move at the same speed and in the same direction.[95] Schooling is sometimes an antipredator adaptation, offering improved vigilance against predators. It is often more efficient to gather food by working as a group, and individual fish optimise their strategies by choosing to join or leave a shoal. When a predator has been noticed, prey fish respond defensively, resulting in collective shoal behaviours such as synchronised movements. Responses do not consist only of attempting to hide or flee; antipredator tactics include for example scattering and reassembling. Fish also aggregate in shoals to spawn.[94] The capelin migrates annually in large schools between its feeding areas and its spawning grounds.[96]

    Communication

    [edit]

    See also: Acoustic communication in aquatic animals

    Fish communicate by transmitting acoustic signals (sounds) to each other. This is most often in the context of feeding, aggression or courtship.[97] The sounds emitted vary with the species and stimulus involved. Fish can produce either stridulatory sounds by moving components of the skeletal system, or can produce non-stridulatory sounds by manipulating specialized organs such as the swimbladder.[98]

    French grunt fish makes sounds by grinding its teeth.

    Some fish produce sounds by rubbing or grinding their bones together. These sounds are stridulatory. In Haemulon flavolineatum, the French grunt fish, as it produces a grunting noise by grinding its teeth together, especially when in distress. The grunts are at a frequency of around 700 Hz, and last approximately 47 milliseconds.[98] The longsnout seahorse, Hippocampus reidi produces two categories of sounds, ‘clicks’ and ‘growls’, by rubbing their coronet bone across the grooved section of their neurocranium.[99] Clicks are produced during courtship and feeding, and the frequencies of clicks were within the range of 50 Hz-800 Hz. The frequencies are at the higher end of the range during spawning, when the female and male fishes were less than fifteen centimeters apart. Growls are produced when the H. reidi are stressed. The ‘growl’ sounds consist of a series of sound pulses and are emitted simultaneously with body vibrations.[100]

    Some fish species create noise by engaging specialized muscles that contract and cause swimbladder vibrations. Oyster toadfish produce loud grunts by contracting sonic muscles along the sides of the swim bladder.[101] Female and male toadfishes emit short-duration grunts, often as a fright response.[102] In addition to short-duration grunts, male toadfishes produce “boat whistle calls”.[103] These calls are longer in duration, lower in frequency, and are primarily used to attract mates.[103] The various sounds have frequency range of 140 Hz to 260 Hz.[103] The frequencies of the calls depend on the rate at which the sonic muscles contract.[104][101]

    The red drum, Sciaenops ocellatus, produces drumming sounds by vibrating its swimbladder. Vibrations are caused by the rapid contraction of sonic muscles that surround the dorsal aspect of the swimbladder. These vibrations result in repeated sounds with frequencies from 100 to >200 Hz. S. ocellatus produces different calls depending on the stimuli involved, such as courtship or a predator’s attack. Females do not produce sounds, and lack sound-producing (sonic) muscles.[105]

    Conservation

    [edit]

    The 2024 IUCN Red List names 2,168 fish species that are endangered or critically endangered.[106] Included are species such as Atlantic cod,[107] Devil’s Hole pupfish,[108] coelacanths,[109] and great white sharks.[110] Because fish live underwater they are more difficult to study than terrestrial animals and plants, and information about fish populations is often lacking. However, freshwater fish seem particularly threatened because they often live in relatively small water bodies. For example, the Devil’s Hole pupfish occupies only a single 3 by 6 metres (10 by 20 ft) pool.[111]

    Overfishing

    [edit]

    Main article: Overfishing

    Collapse of the Atlantic northwest cod fishery[112]

    The Food and Agriculture Organization reports that “in 2017, 34 percent of the fish stocks of the world’s marine fisheries were classified as overfished”.[113] Overfishing is a major threat to edible fish such as cod and tuna.[114][115] Overfishing eventually causes fish stocks to collapse, because the survivors cannot produce enough young to replace those removed. Such commercial extinction does not mean that the species is extinct, merely that it can no longer sustain a fishery. In the case of the Pacific sardine fishery off the California coast, the catch steadily declined from a 1937 peak of 800,000 tonnes to an economically inviable 24,000 tonnes in 1968.[116] In the case of the Atlantic northwest cod fishery, overfishing reduced the fish population to 1% of its historical level by 1992.[112] Fisheries scientists and the fishing industry have sharply differing views on the resiliency of fisheries to intensive fishing. In many coastal regions the fishing industry is a major employer, so governments are predisposed to support it.[117][118] On the other hand, scientists and conservationists push for stringent protection, warning that many stocks could be destroyed within fifty years.[119][120]

    Other threats

    [edit]

    A key stress on both freshwater and marine ecosystems is habitat degradation including water pollution, the building of dams, removal of water for use by humans, and the introduction of exotic species including predators.[121] Freshwater fish, especially if endemic to a region (occurring nowhere else), may be threatened with extinction for all these reasons, as is the case for three of Spain’s ten endemic freshwater fishes.[122] River dams, especially major schemes like the Kariba Dam (Zambezi river) and the Aswan Dam (River Nile) on rivers with economically important fisheries, have caused large reductions in fish catch.[123] Industrial bottom trawling can damage seabed habitats, as has occurred on the Georges Bank in the North Atlantic.[124] Introduction of aquatic invasive species is widespread. It modifies ecosystems, causing biodiversity loss, and can harm fisheries. Harmful species include fish but are not limited to them;[125] the arrival of a comb jelly in the Black Sea damaged the anchovy fishery there.[126][125] The opening of the Suez Canal in 1869 made possible Lessepsian migration, facilitating the arrival of hundreds of Indo-Pacific marine species of fish, algae and invertebrates in the Mediterranean Sea, deeply impacting its overall biodiversity [127] and ecology.[128] The predatory Nile perch was deliberately introduced to Lake Victoria in the 1960s as a commercial and sports fish. The lake had high biodiversity, with some 500 endemic species of cichlid fish. It drastically altered the lake’s ecology, and simplified the fishery from multi-species to just three: the Nile perch, the silver cyprinid, and another introduced fish, the Nile tilapia. The haplochromine cichlid populations have collapsed.[129][130]

    Importance to humans

    [edit]

    Economic

    [edit]

    Main articles: Commercial fishing and Fish farming

    trawler hauling in a large catch of cod, 2016

    Throughout history, humans have used fish as a food source for dietary protein. Historically and today, most fish harvested for human consumption has come by means of catching wild fish. However, fish farming, which has been practiced since about 3,500 BCE in ancient China,[131] is becoming increasingly important in many nations. Overall, about one-sixth of the world’s protein is estimated to be provided by fish.[132] Fishing is accordingly a large global business which provides income for millions of people.[132] The Environmental Defense Fund has a guide on which fish are safe to eat, given the state of pollution in today’s world, and which fish are obtained in a sustainable way.[133] As of 2020, over 65 million tonnes (Mt) of marine fish and 10 Mt of freshwater fish were captured, while some 50 Mt of fish, mainly freshwater, were farmed. Of the marine species captured in 2020, anchoveta represented 4.9 Mt, Alaska pollock 3.5 Mt, skipjack tuna 2.8 Mt, and Atlantic herring and yellowfin tuna 1.6 Mt each; eight more species had catches over 1 Mt.[134]

    Recreation

    [edit]

    Further information: Fishkeeping and Recreational fishing

    Fish have been recognized as a source of beauty for almost as long as used for food, appearing in cave art, being raised as ornamental fish in ponds, and displayed in aquariums in homes, offices, or public settings. Recreational fishing is fishing primarily for pleasure or competition; it can be contrasted with commercial fishing, which is fishing for profit, or artisanal fishing, which is fishing primarily for food. The most common form of recreational fishing employs a rodreellinehooks, and a wide range of baits. Recreational fishing is particularly popular in North America and Europe; government agencies often actively manage target fish species.[135][136]

    Culture

    [edit]

    Main article: Fish in culture

    Fish themes have symbolic significance in many religions. In ancient Mesopotamia, fish offerings were made to the gods from the very earliest times.[137] Fish were also a major symbol of Enki, the god of water.[137] Fish frequently appear as filling motifs in cylinder seals from the Old Babylonian (c. 1830 BC – c. 1531 BC) and Neo-Assyrian (911–609 BC) periods.[137] Starting during the Kassite Period (c. 1600 BC – c. 1155 BC) and lasting until the early Persian Period (550–30 BC), healers and exorcists dressed in ritual garb resembling the bodies of fish.[137] During the Seleucid Period (312–63 BC), the legendary Babylonian culture hero Oannes was said to have dressed in the skin of a fish.[137] Fish were sacred to the Syrian goddess Atargatis[138] and, during her festivals, only her priests were permitted to eat them.[138] In the Book of Jonah, the central figure, a prophet named Jonah, is swallowed by a giant fish after being thrown overboard by the crew of the ship he is travelling on.[139] Early Christians used the ichthys, a symbol of a fish, to represent Jesus.[138][140] Among the deities said to take the form of a fish are Ikatere of the Polynesians,[141] the shark-god Kāmohoaliʻi of Hawaiʻi,[142] and Matsya of the Hindus.[143] The constellation Pisces (“The Fishes”) is associated with a legend from Ancient Rome that Venus and her son Cupid were rescued by two fishes.[144]

    Fish feature prominently in art,[145] in films such as Finding Nemo[146] and books such as The Old Man and the Sea.[147] Large fish, particularly sharks, have frequently been the subject of horror movies and thrillers, notably the novel Jaws, made into a film which in turn has been parodied and imitated many times.[148] Piranhas are shown in a similar light to sharks in films such as Piranha.[149]